中教数据库 > 西安电子科技大学学报 > 文章详情

一种改进的卷积神经网络恶意域名检测算法

更新时间:2023-05-28

【摘要】针对现有检测方法对算法生成的恶意域名检测效率不高,尤其对几种难检测的恶意域名类型检测率低的问题,提出了一种改进的基于卷积神经网络的恶意域名检测算法。该算法在现有的卷积神经网络模型的基础上,增加了提取更深层字符级特征的卷积分支,从而同时提取恶意域名的浅层和深层字符级特征并融合;引入一种聚焦损失函数以解决样本难易程度和数量的双重不平衡导致检测率低的问题,可提高对难样本的检测准确率。改进后的算法对20种恶意域名的平均检测准确率为97.62%,与原算法相比提高了0.94%;对4种较难检测域名的检测准确率分别提高了3.71%、4.6%、11.18%和17.8%。实验结果表明,改进的算法能够提高对恶意域名的检测准确率,尤其能够显著提升对部分难检测域名的检测准确率。

【关键词】

76 2页 免费

发表评论

登录后发表评论 (已发布 0条)

点亮你的头像 秀出你的观点

0/500
以上留言仅代表用户个人观点,不代表中教立场
相关文献

推荐期刊

Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved

京ICP备2021021570号-13

京公网安备 11011102000866号